v|tome|x m

GE v|tome|x m                                               Back to equipment

The phoenix v|tome|x m is a versatile X-ray microfocus CT system for 3D metrology and analysis with up to 300 kV / 500 W.

Within the phoenix v|tome|x m, GE’s unique 300 kV microfocus X-ray tube is for the first time available in a compact CT system for industrial process control as well as for scientific research applications. Beyond down to < 1 µm detail detectability, the system offers industry leading magnification at 300 kV. GE’s high dynamic DXR digital detector array and the click & measure|CT automatization functionality make it an efficient 3D tool for industrial inspection and scientific research. Due to its dual|tube configuration, detailed 3D information for an extremely wide sample range is provided: from high resolution nanoCT® of low absorbing samples up to high power µCT applications such as turbine blade inspection.

NEW: The phoenix v|tome|x m is now also available in specific countries as special metrology edition with a measurement accuracy of 4+L/100 µm referring to VDI 2630 guideline (measured as deviation of sphere distance in tomographic static mode SD (TS), method details referring to VDI 2630-1.3 guideline on request, valid only for phoenix v|tome|x m metrology edition).

Key features:

  • First compact 300kV microfocus CT system with < 1 µm detail detectability
  • Industry leading magnification at 300 kV for high absorbing samples
  • Unique dual|tube configuration for high power µCT as well as high resolution nanoCT®
  • Optimized ease of use due to advanced phoenix datos|x CT software with automated click & measure|CT option
  • Optimized CT acquisition conditions and 3D metrology package with temperature stabilized X-ray tube, digital detector array and cabinet as well as high accuracy direct measuring system

Customer benefits:

  • High precision 3D metrology and non-destructive testing tasks performed with minimal operator training
  • Increased throughput due to high power X-ray tube, efficient, fast detector technology and a high grade of automation
  • Very high image quality due to unique GE DXR detector array (up to 30 fps) for extremely fast CT data acquisition
  • All major hardware and CT software components of the system are proprietary GE technology optimally compatible with one another

3D Computed Tomography

The classic application of industrial X-ray 3D computed tomography (micro ct and nano ct) is the inspection and three-dimensional measurement of metal and plastic castings. However, phoenix|x-ray’s high-resolution X-ray technology opens up a variety of new applications in fields such as sensor technology, electronics, materials science, and many other natural sciences. E.g. turbine blades, Turbine blades are complex high-performance castings which have to fulfill highest quality and security-requirements. CT allows failure analysis as well as precise and reproducible 3D measurements (eg. wall-thickness). The CT system phoenix v|tome|x m 300 with the first unipolar 300 kV microfocus X-ray tube is ideally suited for this application field.


Reproducible 3D metrology with X-ray is the only technique allowing to non-destructively measure the interior of complex objects. By contrast with conventional tactile coordinate measurement technique, a computed tomography scan of an object acquires all surface points simultaneously – including all hidden features like undercuts which are not accessible non-destructively using other methods of measurement. The v|tome|x L 300 has a special 3D metrology package that contains everything needed for dimensional measuring with the greatest possible precision, reproducibility and user-friendliness, from calibration instruments to surface extraction modules. In addition to 2D wall thickness measurements, the CT volume data can be quickly and easily compared with CAD data, for example, in order to analyze the complete component to ensure it complies with all specified dimensions. E.g. 3D measurement of a cylinder head.

Material Science

High-resolution computed tomography (micro ct and nano ct) is used for inspecting materials, composites, sintered materials and ceramics but also to analyze geological or biological samples. Materials distribution, voids and cracks are visualized three-dimensionally at microscopic resolution. E.g. nanoCT® of a glass fiber-composite material: The fiber direction of the fiber mats (blue) and the matrix resin (orange) are displayed. Right: Voids inside the resin appear as dark cavities. Left: The resin has been faded out to better visualize the fiber mats. The individual fibers inside the mat are visible.

Casting & Welding

Radiographic non-destructive testing is used to detect flaws in castings and welds. The combination of microfocus X-ray technology and industrial X-ray computed tomography (micro CT) enables defect detectability in the micrometer range and provides three-dimensional images of low-contrast defects. E.g. 2D / 3D analysis and metrology of a control arm.

Sensorics and Electrical Engineering

In the inspection of sensors and electronic components, high-resolution X-ray technologies are mostly used to inspect and evaluate contacts, joints, cases, insulators and the situation of assembly. It is even possible to inspect semiconductor components and electronic devices (solder joints) without having to disassemble the device. E.g. Microfocus computed tomographic (micro ct) image of a lamda probe (connector-side view) showing the Inconell-protective case (yellow), including laser welded seams, crimp connections (blue) and contacts of the ceramic oxygen sensor (blue/red).

Download Data sheet Phoenix v|tome|x m

Website by Corridor Design